List of Questions
Latex formatted questions may not properly renderQ1 Given f(x) = $$(7x^{4} - 5x^{3})$$, evaluate \[\frac{d f(x)}{d x}\]
Q2 Evaluate \[\int x^{2} e^{3x} dx\]
Q3 Find the volume of a sphere generated by a semicircle \[y=\sqrt(r^{2}-x^{2})\] revolving around the x-axis
Q4 Determine \[\int\frac{x^{2}+1}{(x+2)^{3}}\]
Q5 Evaluate \[\int \frac{x+1}{x^{2}-3x+2} dx\]
Q6 Find $$ \int {\sec^3 x}{\tan x}dx$$
Q7 Find the $$\int {\tan^3 x}{\sec^3 x}dx$$
Q8 Find $$\int x\cos ax^2dx$$ with respect to x
Q9 Evaluate \[\int x e^{6x} dx\]
Q10 Evaluate $$\int e^{4x}dx$$
Q11 Integrate with respect to x :$$ \int_{1}^{4}\frac{x+1}{\sqrt{x}}dx$$
Q12 Integrate with respect to x :$$ \int_{-1}^{3}\frac{x}{\sqrt{7+x^2}}dx$$
Q13 Integrate with respect to x :$$ \int_{-1}^{2}\frac{x^2}{(x^3+4)^2}dx$$
Q14 Evaluate \[\int_{-1}^{2} y^{2}+y^{-2} dy\]
Q15 Find the integral with respect to x $$ \int \cos x\sin x dx$$
Q16 Evalute \[\int x^{2}(3-10x^{3})dx\]
Q17 Evaluate \[\int 3e^{x}+5\cos (x) -10 \sec^{2}(x) dx\]
Q18 Evaluate \[\int \cos (6x+4)dx\]
Q19 Evaluate \[\int(3x-2)^{6} dx\]
Q20 Integrate \[\int (x^{3}+3x^{2}+2x+4)\]
Q21 Differentiate \[y=3\sqrt(x^2)(2x-x^{2})\] with respect to x
Q22 Differentiate with respect to x: \[f(x) = (ax{^3} + bx)\]
Q23 Given \[y(x)=x^{4} - 4x^{3} + 3x^{2} -5x \], evaluate \[\frac{d^{4} y}{d x^{4}}\]
Q24 Given \[\frac{2x^{5}+x^{2}-5}{t^{2}}\], find \[\frac{d y}{d x}\] by using the first principle
Q25 Find the derivative \[f(x)=2x^{2}-16x+35\] by using first principle
Q26 Evaluate the limit \[\lim {x\rightarrow \infty} \frac{6e^{4x}-e^{-2x}}{8e^{4x}-e^{2x}+3e^{-x}}\]
Q27 Evaluate the limit \[\lim {x\rightarrow -\infty} \frac{x^{2}-5t-9}{2x^{4}+3x^{3}}\]
Q28 Evaluate the limit \[\lim {x\rightarrow \infty} \frac{2x^{4}-x^{2}+8x}{-5x^{4}+7}\]
Q29 Evaluate the limit \[\lim {t\rightarrow 4} \frac{t-\sqrt(3+4)}{4-t}\]
Q30 Evaluate the limit \[\lim_{h\rightarrow 0}\frac{2(-3+h)^{2}-18}{h}\]
Q31 Differentiate \[y=3\sqrt(x^2)(2x-x^{2})\] with respect to x
Q32 Differentiate with respect to x: \[f(x) = (ax{^3} + bx)\]
Q33 Given \[y(x)=x^{4} - 4x^{3} + 3x^{2} -5x \], evaluate \[\frac{d^{4} y}{d x^{4}}\]
Q34 Given \[\frac{2x^{5}+x^{2}-5}{t^{2}}\], find \[\frac{d y}{d x}\] by using the first principle
Q35 Find the derivative \[f(x)=2x^{2}-16x+35\] by using first principle
Q36 Evaluate the limit \[\lim {x\rightarrow \infty} \frac{6e^{4x}-e^{-2x}}{8e^{4x}-e^{2x}+3e^{-x}}\]
Q37 Evaluate the limit \[\lim {x\rightarrow -\infty} \frac{x^{2}-5t-9}{2x^{4}+3x^{3}}\]
Q38 Evaluate the limit \[\lim {x\rightarrow \infty} \frac{2x^{4}-x^{2}+8x}{-5x^{4}+7}\]
Q39 Evaluate the limit \[\lim {t\rightarrow 4} \frac{t-\sqrt(3+4)}{4-t}\]
Q40 Evaluate the limit \[\lim_{h\rightarrow 0}\frac{2(-3+h)^{2}-18}{h}\]
No comments:
Post a Comment